PCB的电路概图

初步设计的仿真运作
为了确保设计出来的电路图可以正常运作,这必须先用计算机软件来仿真一次。这类软件可以读取设计图,并且用许多方式显示电路运作的情况。这比起实际做出一块样本PCB,然后用手动测量要来的有效率多了。
将零件放上PCB
零件放置的方式,是根据它们之间如何相连来决定的。它们必须以**有效率的方式与路径相连接。所谓有效率的布线,就是牵线越短并且通过层数越少(这也同时减少导孔的数目)越好,不过在真正布线时,我们会再提到这个问题。下面是总线在PCB上布线的样子。为了让各零件都能够拥有****的配线,放置的位置是很重要的。
测试布线可能性,与高速下的正确运作
现今的部份计算机软件,可以检查各零件摆设的位置是否可以正确连接,或是检查在高速运作下,这样是否可以正确运作。这项步骤称为安排零件,不过我们不会太深入研究这些。如果电路设计有问题,在实地导出线路前,还可以重新安排零件的位置。
导出PCB上线路
在概图中的连接,现在将会实地作成布线的样子。这项步骤通常都是全自动的,不过一般来说还是需要手动更改某些部份。下面是2层板的导线模板。红色和蓝色的线条,分别代表PCB的零件层与焊接层。白色的文字与四方形代表的是网版印刷面的各项标示。红色的点和圆圈代表钻洞与导孔。**右方我们可以看到PCB上的焊接面有金手指。这个PCB的**终构图通常称为工作底片(Artwork)。
每一次的设计,都必须要符合一套规定,像是线路间的**小保留空隙,**小线路宽度,和其它类似的实际限制等。这些规定依照电路的速度,传送信号的强弱,电路对耗电与噪声的敏感度,以及材质品质与制造设备等因素而有不同。如果电流强度上升,那导线的粗细也必须要增加。为了减少PCB的成本,在减少层数的同时,也必须要注意这些规定是否仍旧符合。如果需要超过2层的构造的话,那么通常会使用到电源层以及地线层,来避免信号层上的传送信号受到影响,并且可以当作信号层的防护罩。
导线后电路测试
为了确定线路在导线后能够正常运作,它必须要通过**后检测。这项检测也可以检查是否有不正确的连接,并且所有联机都照着概图走。
建立制作档案
因为目前有许多设计PCB的CAD工具,制造厂商必须有符合标准的档案,才能制造板子。标准规格有好几种,不过**常用的是Gerber files规格。一组Gerber files包括各信号、电源以及地线层的平面图,阻焊层与网板印刷面的平面图,以及钻孔与取放等指定档案。
电磁兼容问题
没有照EMC(电磁兼容)规格设计的电子设备,很可能会散发出电磁能量,并且干扰附近的电器。EMC对电磁干扰(EMI),电磁场(EMF)和射频干扰(RFI)等都规定了**大的限制。这项规定可以确保该电器与附近其它电器的正常运作。EMC对一项设备,散射或传导到另一设备的能量有严格的限制,并且设计时要减少对外来EMF、EMI、RFI等的磁化率。
换言之,这项规定的目的就是要防止电磁能量进入或由装置散发出。这其实是一项很难解决的问题,一般大多会使用电源和地线层,或是将PCB放进金属盒子当中以解决这些问题。电源和地线层可以防止信号层受干扰,金属盒的效用也差不多。对这些问题我们就不过于深入了。
电路的**大速度得看如何照EMC规定做了。内部的EMI,像是导体间的电流耗损,会随着频率上升而增强。如果两者之间的的电流差距过大,那么一定要拉长两者间的距离。这也告诉我们如何避免高压,以及让电路的电流消耗降到**低。布线的延迟率也很重要,所以长度自然越短越好。所以布线良好的小PCB,会比大PCB更适合在高速下运作。
制造流程
PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的「基板」开始影像(成形/导线制作)
制作的****步是建立出零件间联机的布线。
我们采用负片转印(Subtractive transfer)方式将工作底片表现在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。追加式转印(Additive Pattern transfer)是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。
如果制作的是双面板,那么PCB的基板两面都会铺上铜箔,如果制作的是多层板,接下来的步骤则会将这些板子黏在一起。
接下来介绍导线如何焊在基板上。
正光阻剂(positive photoresist)是由感光剂制成的,它在照明下会溶解(负光阻剂则是如果没有经过照明就会分解)。有很多方式可以处理铜表面的光阻剂,不过**普遍的方式,是将它加热,并在含有光阻剂的表面上滚动(称作干膜光阻剂)。它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。
遮光罩只是一个制造中PCB层的模板。在PCB板上的光阻剂经过UV光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光(假设用的是正光阻剂)。这些被光阻剂盖住的地方,将会变成布线。
在光阻剂显影之后,要蚀刻的其它的裸铜部份。蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。一般用作蚀刻溶剂的有,**化铁(Ferric Chloride),碱性氨(Alkaline Ammonia),硫酸加过氧化氢(Sulfuric Acid + Hydrogen Peroxide),和**化铜(Cupric Chloride)等。蚀刻结束后将剩下的光阻剂去除掉。这称作脱膜(Stripping)程序。
钻孔与电镀
如果制作的是多层PCB板,并且里头包含埋孔或是盲孔的话,每一层板子在黏合前必须要先钻孔与电镀。如果不经过这个步骤,那么就没办法互相连接了。
在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学制程中完成。
多层PCB压合
各单片层必须要压合才能制造出多层板。压合动作包括在各层间加入绝缘层,以及将彼此黏牢等。如果有透过好几层的导孔,那么每层都必须要重复处理。多层板的外侧两面上的布线,则通常在多层板压合后才处理。
处理阻焊层、网版印刷面和金手指部份电镀
接下来将阻焊漆覆盖在**外层的布线上,这样一来布线就不会接触到电镀部份外了。网版印刷面则印在其上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。金手指部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。
测试
测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。
零件安装与焊接
**后一项步骤就是安装与焊接各零件了。无论是THT与SMT零件都利用机器设备来安装放置在PCB上。
THT零件通常都用叫做波峰焊接(Wave Soldering)的方式来焊接。这可以让所有零件一次焊接上PCB。首先将接脚切割到靠近板子,并且稍微弯曲以让零件能够固定。接着将PCB移到助溶剂的水波上,让底部接触到助溶剂,这样可以将底部金属上的氧化物给除去。在加热PCB后,这次则移到融化的焊料上,在和底部接触后焊接就完成了。
自动焊接SMT零件的方式则称为再流回焊接(Over Reflow Soldering)。里头含有助溶剂与焊料的糊状焊接物,在零件安装在PCB上后先处理一次,经过PCB加热后再处理一次。待PCB冷却之后焊接就完成了,接下来就是准备进行PCB的**终测试了。
节省制造成本的方法
为了让PCB的成本能够越低越好,有许多因素必须要列入考量:
板子的大小自然是个重点。板子越小成本就越低。部份的PCB尺寸已经成为标准,只要照着尺寸作那么成本就自然会下降。CustomPCB网站上有一些关于标准尺寸的信息。
使用SMT会比THT来得省钱,因为PCB上的零件会更密集(也会比较小)。
另一方面,如果板子上的零件很密集,那么布线也必须更细,使用的设备也相对的要更高阶。同时使用的材质也要更****,在导线设计上也必须要更小心,以免造成耗电等会对电路造成影响的问题。这些问题带来的成本,�****跣CB尺寸所节省的还要多。
层数越多成本越高,不过层数少的PCB通常会造成大小的增加。
钻孔需要时间,所以导孔越少越好。
埋孔比贯穿所有层的导孔要贵。因为埋孔必须要在接合前就先钻好洞。
板子上孔的大小是依照零件接脚的直径来决定。如果板子上有不同类型接脚的零件,那么因为机器不能使用同一个钻头钻所有的洞,相对的比较耗时间,也代表制造成本相对提升。
使用飞针式探测方式的电子测试,通常比光学方式贵。一般来说光学测试已经足够保证PCB上没有任何错误。
总而言之,厂商在设备上下的工夫也是越来越复杂了。了解PCB的制造过程是很有用的,因为当我们在比较主机板时,相同效能的板子成本可能不同,稳定性也各异,这也让我们得以比较各厂商的能力。
好的工程师可以光看主机板设计,就知道设计品质的好坏。您也许自认没那么强,不过下次您拿到主机板或是显示卡时,不妨先鉴赏一下PCB设计之美吧!
|